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Abstract 

Fixed point theory is a fundamental area in mathematics with significant applications in various fields, 

including optimization, differential equations, and computer science. Among the numerous branches of this 

theory, common fixed point theorems for contractive-type mappings hold particular importance. These 

theorems provide conditions under which two or more mappings on a metric or generalized metric space 

share a common fixed point. 

Contractive-type mappings, characterized by their ability to bring points closer together under certain 

constraints, serve as a cornerstone for establishing these theorems. This abstract explores key developments 

in common fixed point theorems, focusing on mappings such as Banach contractions, Kannan mappings, 

and Reich-type contractions. It also examines the extension of these results to broader settings, including 

metric-like spaces, partially ordered spaces, and fuzzy metric spaces, enhancing their applicability to real-

world problems. 

The study underscores the significance of contractive conditions in guaranteeing the existence and 

uniqueness of common fixed points. Furthermore, it highlights recent advancements in this area, driven by 

innovations in metric space generalizations and the incorporation of hybrid mappings. These results not only 

enrich the theoretical framework of fixed point theory but also extend its applicability to interdisciplinary 

domains, paving the way for future research. 

Keywords: Common Fixed Point, Theorems, Mappings 

Introduction 

Fixed point theory is a central area in 

mathematical analysis and has become a 

cornerstone for solving problems across numerous 

disciplines, such as engineering, computer 

science, physics, economics, and biology. The 

concept of a fixed point, which refers to a point 

that remains invariant under a given mapping, 

provides a powerful framework for addressing 

equations and systems where equilibrium or 

stability plays a critical role. The significance of 

this theory lies in its universality and adaptability, 

offering solutions to problems ranging from 

nonlinear differential equations to optimization 

and game theory. 

A mapping T is said to have a fixed point if there 

exists a point xxx in the domain of T such that  

T(x)=xT(x) = xT(x)=x.  

While this concept appears simple, the conditions 

under which fixed points exist are highly nuanced 

and require deep mathematical insights. The 

development of fixed point theorems, which 

establish criteria for the existence and uniqueness 

of fixed points, has been one of the most 

remarkable achievements in the field of 

mathematics. Among these, Banach's Fixed Point 

Theorem, commonly referred to as the 

Contraction Mapping Principle, is perhaps the 

most celebrated. It asserts that any contraction 

mapping on a complete metric space has a unique 

fixed point, and it provides a constructive method 

for finding that point. 

Beyond individual fixed points, the study of 

common fixed points, where two or more 

mappings share a single fixed point, has attracted 

significant attention. Common fixed point 

theorems are critical in extending the applicability 

of fixed point theory to systems involving multiple 

mappings. These results are essential for 

understanding coupled systems, iterative 

algorithms, and equilibrium analysis in dynamic 

environments. Contractive-type mappings, which 
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generalize the notion of contraction, have proven 

to be particularly effective in deriving common 

fixed point theorems. 

The importance of contractive-type mappings lies 

in their ability to bridge theory with practical 

applications. These mappings extend the classical 

contraction condition by introducing various 

generalized criteria, such as weak contractions, 

Kannan mappings, and Reich-type contractions. 

These generalized notions enable fixed point 

results in spaces and contexts where traditional 

conditions may fail. For example, in spaces that 

are not complete or in settings involving non-

linear or non-Euclidean structures, contractive-

type mappings allow the existence of fixed points 

to be established. 

In recent years, the scope of fixed point theory has 

expanded beyond metric spaces to encompass 

generalized spaces, such as metric-like spaces, 

fuzzy metric spaces, and partial metric spaces. 

These generalizations reflect the increasing 

complexity of modern problems that arise in fields 

such as data analysis, machine learning, and 

network theory. The versatility of fixed point 

theorems in these new frameworks underscores 

their foundational role in advancing both 

theoretical and applied mathematics. 

One significant motivation for the study of fixed 

points is their practical relevance. In optimization, 

fixed point methods are used to find solutions to 

variational problems and equilibrium systems. In 

computer science, they are instrumental in 

algorithms for data clustering, image 

reconstruction, and machine learning. Physics 

relies on fixed point theory to analyze stability in 

dynamical systems, while economics uses it to 

determine market equilibria and Nash equilibria in 

game theory. The universal applicability of fixed 

point results demonstrates their profound 

influence across disciplines. 

At the heart of this study is the exploration of 

common fixed point theorems for contractive-type 

mappings. These theorems not only generalize 

classical results but also open doors to new 

methods and applications. By analyzing mappings 

that satisfy relaxed contractive conditions, such as 

cyclic contractions or hybrid mappings, 

researchers have made significant strides in 

solving problems that are more complex and 

multidimensional. 

This introduction also highlights the 

methodological significance of fixed point theory. 

Iterative techniques, often associated with fixed 

point results, provide computationally efficient 

tools for solving equations and systems of 

equations. These methods, rooted in the 

constructive nature of fixed point theorems, are 

particularly useful in applied settings, where 

closed-form solutions are often unattainable. 

Despite its successes, fixed point theory faces 

challenges and opportunities for growth. The 

development of fixed point results in generalized 

spaces, such as those with incomplete structures 

or non-linear metrics, remains an area of active 

research. Furthermore, the integration of fixed 

point methods with modern computational tools, 

such as artificial intelligence and big data 

analytics, presents exciting possibilities for 

addressing real-world problems. 

In conclusion, fixed point theory and its 

extensions, particularly through contractive-type 

mappings, represent a vibrant and impactful area 

of study. The study of common fixed points is a 

natural progression that expands the applicability 

and utility of this theory. By addressing the 

interplay between theoretical advancements and 

practical applications, this field continues to 

contribute to the broader understanding of 

mathematical structures and their relevance to 

modern science and technology. This paper aims 

to explore the foundations, advancements, and 

applications of common fixed point theorems for 

contractive-type mappings, offering insights into 

their significance and potential for future 

development. 

Preliminaries provide foundational concepts, 

definitions, and mathematical structures necessary 

for understanding fixed point theorems and their 

applications. 

Definitions 

Metric Space: 

A metric space (X,d)(X, d)(X,d) is a set XXX 

equipped with a distance function d:X×X→Rd : X 

\times X \to \mathbb{R}d:X×X→R satisfying: 

 d(x,y)≥0d(x, y) \geq 0d(x,y)≥0 and 

d(x,y)=0  ⟺  x=yd(x, y) = 0 \iff x = 

yd(x,y)=0⟺x=y (non-negativity and 

identity of indiscernibles). 

 d(x,y)=d(y,x)d(x, y) = d(y, 

x)d(x,y)=d(y,x) (symmetry). 
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 d(x,z)≤d(x,y)+d(y,z)d(x, z) \leq d(x, y) + 

d(y, z)d(x,z)≤d(x,y)+d(y,z) (triangle 

inequality). 

Fixed Point: 

Let T:X→XT: X \to XT:X→X be a mapping. A 

point x∈Xx \in Xx∈X is a fixed point of TTT if 

T(x)=xT(x) = xT(x)=x. 

Contraction Mapping: 

A mapping T:X→XT: X \to XT:X→X is a 

contraction if there exists a constant k∈[0,1)k \in 

[0, 1)k∈[0,1) such that 

d(T(x),T(y))≤k⋅d(x,y)d(T(x), T(y)) \leq k \cdot 

d(x, y)d(T(x),T(y))≤k⋅d(x,y) for all x,y∈Xx, y \in 

Xx,y∈X. 

Common Fixed Point: 

Two mappings T1,T2:X→XT2, T2: X \to XT1,T2

:X→X have a common fixed point if there exists 

x∈Xx \in Xx∈X such that T1(x)=T2(x)=xT_1(x) = 

T2(x) = xT1(x)=T2(x)=x. 

Propositions 

Proposition 1 (Banach Contraction Mapping 

Theorem): 

 If (X,d)(X, d)(X,d) is a complete metric space and 

T:X→XT: X \to XT:X→X is a contraction 

mapping, then T has a unique fixed point 

x∗∈Xx^* \in Xx∗∈X. Furthermore, the sequence 

defined by xn+1=T(xn)x_{n+1} = T(x_n)xn+1

=T(xn), starting from any x0∈Xx_0 \in Xx0∈X, 

converges to x∗x^*x∗. 
Proposition 2 (Common Fixed Point Theorem 

for Commuting Mappings): 

Let (X,d)(X, d)(X,d) be a complete metric space, 

and let T1,T2:X→XT1, T2: X \to XT1,T2:X→X be 

two commuting contraction mappings (i.e., 

T(T2(x))=T2(T1(x))T1(T2(x)) = T2 (T1(x))T1(T2

(x))=T2(T1(x)) for all x∈Xx \in Xx∈X). Then T1 

and T2  have a unique common fixed point. 

Proposition 3 (Kannan's Fixed Point 

Theorem): 

Let (X,d)(X, d)(X,d) be a complete metric space, 

and let T:X→XT: X \to XT:X→X be a mapping 

such that for all x,y∈Xx, y \in Xx,y∈X: 

d(T(x),T(y))≤12[d(x,T(x))+d(y,T(y))].d(

T(x),  

Then T has a unique fixed point. 

Proposition 4 (Reich's Contraction Mapping 

Theorem): 

Let (X,d)(X, d)(X,d) be a complete metric space, 

and let T:X→XT: X \to XT:X→X satisfy: 

d(T(x),T(y))≤αd(x,y)+β[d(x,T(x))+d(y,T(y))]d(T

(x),  

for all x,y∈Xx, y \in Xx,y∈X, where α,β≥0\alpha, 

\beta \geq 0α,β≥0 and α+2β<1\alpha + 2\beta < 

1α+2β<1. Then T has a unique fixed point. 

These definitions and propositions form the 

foundation for understanding fixed point theory 

and its applications to contractive-type mappings. 

Let me know if you'd like additional details or 

more advanced results! 

Partially Ordered Set (Poset): 
A set X is a partially ordered set if it is equipped 

with a binary relation ≤\leq≤ satisfying: 

 Reflexivity: x≤xx \leq xx≤x for all x∈Xx 

\in Xx∈X. 

 Antisymmetry: If x≤yx \leq yx≤y and 

y≤xy \leq xy≤x, then x=yx = yx=y. 

 Transitivity: If x≤yx \leq yx≤y and y≤zy 

\leq zy≤z, then x≤zx \leq zx≤z. 

Complete Metric Space: 
A metric space (X,d)(X, d)(X,d) is complete if 

every Cauchy sequence in X converges to a point 

in X. 

 A sequence {xn}\{x_n\}{xn} is Cauchy if 

for every ϵ>0\epsilon > 0ϵ>0, there exists 

N∈NN \in \mathbb{N}N∈N such that 

d(xm,xn)<ϵd(x_m, x_n) < \epsilond(xm

,xn)<ϵ for all m,n≥Nm, n \geq Nm,n≥N. 

Self-Mapping: 
A mapping T:X→XT: X \to XT:X→X is called a 

self-mapping if the domain and codomain of TTT 

are the same set X. 

Cyclic Mapping: 
Let X1,X2,...,Xk, be non-empty subsets of a metric 

space X. A mapping T:⋃k=1Xi→⋃i=1kXiT: 

\bigcup_{i=1}^k X_i \to \bigcup_{i=1}^k 

X_iT:⋃i=1kXi→⋃i=1kXi is called cyclic if 

T(Xi)⊆Xi+1T(X_i)  

Weak Contraction: 
A mapping T:X→XT: X \to XT:X→X is a weak 

contraction if there exists a constant k∈[0,1)k \in 

[0, 1)k∈[0,1) and a non-decreasing function 

ϕ:R+→R+\phi: \mathbb{R}^+ \to 

\mathbb{R}^+ϕ:R+→R+ with ϕ(0)=0\phi(0) = 

0ϕ(0)=0 such that for all x,y∈Xx, y \in Xx,y∈X: 

d(T(x),T(y))≤k⋅d(x,y)+ϕ(d(x,y)). 

Multivalued Mapping: 
A mapping T:X→2XT: X \to 2^XT:X→2X (the 

power set of X) is called a multivalued mapping if 

T(x)T(x)T(x) is a subset of X for every x∈Xx \in 

Xx∈X. 
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A fixed point of T is x∈Xx \in 

Xx∈X such that x∈T(x)x \in 

T(x)x∈T(x). 

Convex Metric Space: 
A metric space (X,d)(X, d)(X,d) is convex if for 

any two points x,y∈Xx, y \in Xx,y∈X and t∈[0,1]t 

\in [0, 1]t∈[0,1], there exists a point z∈Xz \in 

Xz∈X such that d(z,x)=t⋅d(x,y)d(z, x)  

Fuzzy Metric Space: 

A fuzzy metric space (X,M,∗)(X, M, *)(X,M,∗) 
consists of a set XXX, a fuzzy set 

M:X×X×R+→[0,1]M: X \times X \times 

\mathbb{R}^+ \to [0, 1]M:X×X×R+→[0,1], and a 

t-norm ∗, satisfying specific axioms. This 

framework generalizes metric spaces to handle 

uncertainty. 

Hybrid Mapping: 
A mapping T:X→XT: X \to XT:X→X is hybrid if 

it combines properties of multiple contraction 

conditions. For example, it may satisfy a Kannan-

type contraction on part of the domain and a 

Banach-type contraction on another. 

Asymptotic Contraction: 
A mapping T:X→XT: X \to XT:X→X is an 

asymptotic contraction if there exists a sequence 

{kn}\{k_n\}{kn} with kn→0k_n \to 0kn→0 as 

n→∞n \to \inftyn→∞ such that: 

d(Tn(x),Tn(y))≤kn⋅d(x,y)∀x,y∈X, n∈N 

Non-Expansive Mapping: 
A mapping T:X→Xis non-expansive X is non-

expansive if for all x,y∈Xx, y \in Xx,y∈X: 

d(T(x),T(y))≤d(x,y) 

Iterated Function System (IFS): 
An iterated function system is a collection of 

mappings {Ti:X→X}i=1n\{T_i: X \to 

X\}_{i=1}^n{Ti:X→X}i=1n used to construct 

fractals through iterative application. Fixed points 

of IFS play a key role in fractal generation. 

Lemma 1: Basic Fixed Point Lemma for 

Contraction Mapping 

Let (X,d)(X, d)(X,d) be a complete metric space, 

and let T:X→XT: X \to XT:X→X be a contraction 

mapping. Then: 

1. T has a unique fixed point. 

2. For any x0∈Xx_0 \in Xx0∈X, the 

sequence {xn}\{x_n\}{xn} defined by 

xn+1=T(xn)x_{n+1} = T(x_n)xn+1

=T(xn) converges to the fixed point. 

Lemma 2: Monotone Sequence Lemma in 

Ordered Metric Spaces 

Let (X,≤,d)(X, \leq, d)(X,≤,d) be a partially 

ordered complete metric space. Suppose 

T:X→XT: X \to XT:X→X is an order-preserving 

mapping (i.e., x≤y  ⟹  T(x)≤T(y)x \leq y \implies 

T(x) \leq T(y)x≤y⟹T(x)≤T(y)) and there exists a 

lower bound x0∈Xx_0 \in Xx0∈X such that 

x0≤T(x0)x_0 \leq T(x_0)x0≤T(x0). Then: 

 The iterative sequence {xn}\{x_n\}{xn} 

defined by xn+1=T(xn)x_{n+1} = 

T(x_n)xn+1=T(xn) is monotone 

increasing. 

 If X is complete, {xn}\{x_n\}{xn} 

converges to a fixed point of T. 

Lemma 3: Contraction Condition Lemma 

If a mapping T:X→XT: X \to XT:X→X satisfies 

d(T(x),T(y))≤kd(x,y)d(T(x), T(y)) \leq kd(x, 

y)d(T(x),T(y))≤kd(x,y) for all x,y∈Xx, y \in 

Xx,y∈X and k∈[0,1)k \in [0, 1)k∈[0,1), then TTT 

is continuous. 

Lemma 4: Fixed Point Lemma for Cyclic 

Mappings 

Let (X,d)(X, d)(X,d) be a complete metric space, 

and let T:X→XT: X \to XT:X→X be a cyclic 

mapping with subsets X1,X2,...,Xk⊆XX_1, X_2, 

..., X_k \subseteq XX1,X2,...,Xk⊆X such that 

T(Xi)⊆Xi+1T(X_i) \subseteq X_{i+1}T(Xi

)⊆Xi+1 (Xk+1=X1X_{k+1} = X_1Xk+1=X1). If 

T satisfies a contraction condition: 

d(T(x),T(y))≤k⋅d(x,y)∀x,y∈⋃i=1kXi, k∈[0,1), 

then T has a unique fixed point in 

⋃i=1kXi\bigcup_{i=1}^k X_i⋃i=1kXi. 

Lemma 5: Krasnoselskii’s Lemma 

Let X be a Banach space, and let A,B:X→XA, B: 

X \to XA,B:X→X be mappings such that: 

1. A is a contraction. 

2. B is continuous and compact. 

3. Then, the operator T=A+BT = A + 

BT=A+B has at least one fixed point. 

Lemma 6: Banach's Lemma (Iterative 

Approximation) 

For any contraction mapping T:X→XT: X \to 

XT:X→X in a complete metric space (X,d)(X, 

d)(X,d), the iterative sequence {xn}\{x_n\}{xn} 

defined by xn+1=T(xn)x_{n+1} = T(x_n)xn+1

=T(xn) converges to the fixed point x∗x^*x∗, and 

the convergence rate satisfies: 

d(xn,x∗)≤knd(x0,x1),d(x_n, x^*) \leq k^n d(x_0, 

x_1),d(xn,x∗)≤knd(x0,x1), 

where kkk is the contraction constant. 

Lemma 7: Common Fixed Point Lemma for 

Commuting Mappings 
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Let T1,T2:X→XT1, T2: X \to XT1,T2:X→X be two 

commuting self-mappings on a complete metric 

space (X,d)(X, d)(X,d) (i.e., 

T(1T2(x))=T2(T1(x))T1(T2(x)) = T2(T_1(x))T1(T2

(x))=T2(T1(x)) for all x∈Xx \in Xx∈X). If both T1 

and T2 are contractions, then they have a unique 

common fixed point. 

Lemma 8: Fixed Point Lemma for Convex 

Spaces 

Let X be a convex metric space, and let T:X→XT: 

X \to XT:X→X be a non-expansive mapping 

(d(T(x),T(y))≤d(x,y)d(T(x), T(y)) \leq d(x, 

y)d(T(x),T(y))≤d(x,y) for all x,y∈Xx, y \in 

Xx,y∈X). If T is asymptotically regular (i.e., 

limn→∞d(Tn(x),Tn+1(x))=0\lim_{n \to \infty} 

d(T^n(x), T^{n+1}(x)) = 0limn→∞

d(Tn(x),Tn+1(x))=0 for all x∈Xx \in Xx∈X), then 

T has at least one fixed point. 

These lemmas establish crucial foundational 

results and provide tools for proving more 

advanced theorems in fixed point theory. Let me 

know if you'd like detailed explanations of any 

lemma or its proof! 

Theorem 1: Banach Fixed Point Theorem 

(Contraction Mapping Theorem) 

Let (X,d)(X, d)(X,d) be a complete metric space 

and T:X→XT: X \to XT:X→X a contraction 

mapping, i.e., there exists k∈[0,1)k \in [0, 

1)k∈[0,1) such that: 

d(T(x),T(y))≤k⋅d(x,y)∀x,y∈X.d(T(x), T 

Then: 

1. T has a unique fixed point x∗∈Xx^* \in 

Xx∗∈X. 

2. For any initial point x0∈Xx_0 \in Xx0∈X, 

the sequence defined by 

xn+1=T(xn)x_{n+1} = T(x_n)xn+1

=T(xn) converges to x∗x^*x∗. 
3. The rate of convergence is geometric with 

factor kkk. 

Theorem 2: Schauder Fixed Point Theorem 

Let C be a non-empty, closed, bounded, and 

convex subset of a Banach space X, and let 

T:C→CT: C \to CT:C→C be a continuous 

mapping. Then T has at least one fixed point in C. 

Theorem 3: Brouwer Fixed Point Theorem 

Let X be a non-empty, compact, and convex 

subset of a Euclidean space Rn\mathbb{R}^nRn, 

and let T:X→XT: X \to XT:X→X be a continuous 

mapping. Then T has at least one fixed point. 

Theorem 4: Kakutani Fixed Point Theorem 

Let CCC be a non-empty, compact, and convex 

subset of a finite-dimensional vector space, and let 

T:C→2CT: C \to 2^CT:C→2C (a multivalued 

mapping) satisfy: 

1. T(x)T(x)T(x) is non-empty, closed, and 

convex for all x∈Cx \in Cx∈C. 

2. T has a closed graph. 

3. Then T has at least one fixed point. 

Theorem 5: Knaster-Tarski Fixed Point 

Theorem 

Let (X,≤)(X, \leq)(X,≤) be a complete lattice, and 

let T:X→XT: X \to XT:X→X be a monotone 

function (order-preserving). Then T has at least 

one fixed point in X, and the set of fixed points 

forms a complete lattice. 

Theorem 6: Boyd-Wong Fixed Point Theorem 

Let (X,d)(X, d)(X,d) be a complete metric space 

and T:X→XT: X \to XT:X→X satisfy the 

following generalized contraction condition: 

d(T(x),T(y))≤ϕ(d(x,y))∀x,y∈X,d(T(x),  

where ϕ:[0,∞)→[0,∞)\phi: [0, \infty) \to [0, 

\infty)ϕ:[0,∞)→[0,∞) is a function such that 

ϕ(t)<t\phi(t) < tϕ(t)<t for all t>0t > 0t>0. 

Then T has a unique fixed point in X. 

Theorem 7: Edelstein Fixed Point Theorem 

Let XXX be a compact metric space, and let 

T:X→XT: X \to XT:X→X satisfy the condition: 

d(T(x),T(y))<d(x,y)∀x,y∈X, x≠y. 

 Then T has a unique fixed point in X. 

Theorem 8: Caristi Fixed Point Theorem 

Let (X,d)(X, d)(X,d) be a complete metric space, 

and let φ:X→[0,∞)\varphi: X \to [0, 

\infty)φ:X→[0,∞) be a lower semi-continuous 

function. If T:X→XT: X \to XT:X→X satisfies: 

d(x,T(x))≤φ(x)−φ(T(x))∀x∈X,d(x,  

then T has a fixed point in X. 

Theorem 9: The Fixed Point Theorem for 

Multivalued Contractions 

Let (X,d)(X, d)(X,d) be a complete metric space, 

and let T:X→2XT: X \to 2^XT:X→2X be a 

multivalued mapping such that T(x)T(x)T(x) is 

non-empty, closed, and satisfies: 

H(T(x),T(y))≤k⋅d(x,y)∀x,y∈X, k∈[0,1), 

 where H is the Hausdorff metric. Then T has a 

fixed point. 

Theorem 10: Fixed Point Theorem in Partially 

Ordered Metric Spaces 

Let (X,≤,d)(X, \leq, d)(X,≤,d) be a partially 

ordered complete metric space. Suppose 

T:X→XT: X \to XT:X→X is a monotone 

mapping (order-preserving) and there exists 
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x0∈Xx_0 \in Xx0∈X such that x0≤T(x0)x_0 \leq 

T(x_0)x0≤T(x0). If TTT satisfies a contraction 

condition: 

d(T(x),T(y))≤k⋅d(x,y)∀x,y∈X, k∈[0,1), 

 then T has a fixed point in X. 

These main results demonstrate the versatility of 

fixed point theory and its applicability to various 

mathematical frameworks, including metric 

spaces, Banach spaces, and lattice structures. Let 

me know if you'd like more information or 

specific examples related to these theorems! 

Conclusion 

Fixed point theory serves as a cornerstone in 

mathematical analysis and its applications, 

providing a robust framework for understanding 

the existence and uniqueness of solutions to a 

wide array of problems across disciplines. From 

Banach’s and Brouwer’s foundational theorems to 

modern advancements involving multivalued and 

partially ordered spaces, the theory has evolved to 

address increasingly complex scenarios. Its 

relevance extends beyond pure mathematics, 

influencing fields such as economics, computer 

science, physics, and engineering, where iterative 

processes and equilibrium states are studied. 

The unifying nature of fixed point theory bridges 

diverse areas, offering insights into nonlinear 

analysis, optimization, and dynamical systems. It 

forms the backbone of algorithms used in solving 

differential equations, game theory, and modeling 

ecological systems. The interplay between 

theoretical generalizations, such as Schauder's and 

Kakutani's fixed point theorems, and practical 

applications highlights the adaptability and 

significance of this field. 

As research continues to expand into areas such as 

quantum computing, machine learning, and 

interdisciplinary studies, fixed point theory 

remains integral in addressing emerging 

challenges. Its potential for fostering collaboration 

between mathematics and applied sciences 

underscores its enduring importance. In 

conclusion, fixed point theory is not just a 

mathematical abstraction but a critical tool for 

solving real-world problems and advancing 

knowledge across multiple domains. 
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